Fluconazole as a therapeutic alternative in infections associated with Mycobacterium tuberculosis

  • Lisette Sandrea Bacteriology Professional Practice. School of Bioanalysis, Faculty of Medicine, University of Zulia.
  • Cesar Ramirez School of Bioanalysis, Faculty of Medicine, University of Zulia.
  • Zolay Romay Bacteriological Reference Center, Autonomous Service Maracaibo University Hospital.
Keywords: microbial sensibility test, fluconazole, Mycobacterium tuberculosis, rifampin, isoniazid

Abstract

Mycobacterium tuberculosis (M. tuberculosis) is a microorganism whose importance as an infectious agent has remained over the years but which has become a recent emergency and a serious public health problem in response to the evolution in its behavior against first-line antimicrobials, for its treatment and the emergence of multi-resistant strains, which require the use of therapeutic alternatives that allow its control. The objective of the work was to evaluate the in vitro behavior of M. tuberculosis before the antifungal agent fluconazole, for its possible use as a therapeutic alternative. To this, six strains were evaluated M. tuberculosis: 2 resistants to rifampicin, 2 resistants to isoniazid and 2 sensitive to both antimicrobials. We used the method of Minimum Inhibitory Concentration, using the microplate technique with Alamar Blue and the tube technique. Both methodologies showed sensitivity to low concentrations of fluconazole (0.0625 μg/ml). All strains were sensitive to the fluconazole / isoniazid combination; whereas, when exposed to the fluconazole / rifampicin combination, the strains showed resistance, indicating the antagonistic effect of rifampicin on fluconazole. The results allow us to conclude and suggest the possible therapeutic use of fluconazole against infections associated with M. tuberculosis.

References

Organización Mundial de la Salud. Centro de prensa, Tuberculosis. 2018. Disponible en: http://www.who.int/mediacentre/factsheets/fs104/es/

Organización Mundial de la Salud. Informa mundial sobre la Tuberculosis 2017. Disponible en: http://www.who.int/campaigns/tb-day/2018/exe_summary_es.pdf

Organización Mundial de la Salud (OMS). 2014. Informe mundial sobre la tuberculosis 2014. Disponible en: http://www.who.int/tb/publications/global_report/gtbr14_execsummary_summary_es.pdf

Turner R.; Bothamley G. Cough and the transmission of tuberculosis. The J Infect Dis. 2015;211(9): 1367-1372.

Yan S, Chen L, Wu W, Fu Z, Zhang H, Li Z et al. Early versus Delayed Antiretroviral Therapy for HIV and Tuberculosis Co-Infected Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. PLOS ONE. 2015; 10(5): e0127645. https://doi.org/10.1371/journal.pone.0127645

Lemus, D. 2007. Métodos rápidos para la detección de resistencia en Mycobacterium tuberculosis. Tesis de grado para optar al título de Doctor en Ciencias de la Salud. Instituto de Medicina Tropical “Pedro Kouri” (IMTPK). La Habana: 136p.

Jurado, L.; Murcia M.; Hidalgo P.; Leguizamón J.; Gonzales L. Phenotypic and genotypic diagnosis of bone and miliary tuberculosis in an HIV positive patient in Bogotá, Colombia. Biomedica, 2014;35(1): 8-15.

Patiño, M.; Abadia, E.; Gómez, S.; Maes, M.; Muñoz, M.; Gómez, D.; et al. Mycobacterium tuberculosis population structure and molecular epidemiological analysis in Sucre municipality, Miranda state, Venezuela. 2017; Invest clin. 55: 32-51.

Wang, D.; Yang, C.; Kuang, T.; Lei, H.; Meng, X.; Tong, A.; et al. Prevalence of multidrug and extensively drug-resistant tuberculosis in Beijing, China hospital-based retrospective study. Japanese J Infect Dis. 2010;63(5): 368-371.

Kant, S.; Maurya, A.; Kushwaha, R.; Nag, V.; Prasad, R. Multi-drug resistant tuberculosis: an iatrogenic problem. Biosci Trends. 2010;4(2): 48-55.

Eldhom, V.; Monteserin, J.; Rieux, A.; Rieux, A.; Lόpez, B.; Sobkowiak, B.; et al. Four decades of transmission of a multidrugs-resistant Mycobacterium tuberculosis outbreak strain. Nat Commun. 2015;6:7119.

Centro para el Control y la Prevención de Enfermedades (CDC). 2013. Eliminación de la TB. Tuberculosis extremadamente resistente (XDR-TB). Disponible en: http://www.cdc.gov/tb/esp/publications/factsheets/drtb/xdrtbspanish.pdf

Lewis, J. M., & Sloan, D. J. The role of delamanid in the treatment of drug-resistant tuberculosis. Therapeutics and Clinical Risk Management. 2015;11, 779-791.

Imperiale, B,R.; Cataldi, A.A.; Morcillo N.S. In vitro anti-tuberculosis activity of azole drugs against Mycobacterium tuberculosis clinical isolates. Rev Argent Microbiol, 2017;49(4):332-338.

Ahmad, Z., Sharma, S. & Khuller, G. K. The potential of azole antifungals against latent/persistent tuberculosis. FEMS Microbiol. Lett. 2006;258, 200–203.

Yajko, D.; Madej, J.; Lancaster, M.; Sanders, C.; Cawthon V.; Gee, B.; et al. Colorimetric method for determining MICs of antimicrobial agents for Mycobacterium tuberculosis. J Clin Microbiol. 1995;33(9):2324-2327

McLean, K.; Marshall, K.; Richmond, A.; Hunter, I.; Fowler, K.; Kieser, T.; et al. Azole antifungals are potent inhibitors of cytochrome P450 mono-oxigenases and bacterial growth in Mycobacterium and Streptomyces. Microbiol. 2002;148: 2937-2949.

Centro para el Control y Prevención de enfermedades (CDC). Biosafety in Microbiological and Biomedical Laboratories. 5th Edition. U.S. Department of Health and Human Services Public Health Service. 2009. Disponible en: http://www.cdc.gov/biosafety/publications/index.htm

Lazar, J.; Wilner, K. Drug interactions with fluconazole. Rev Infect Dis. 1990;12(3):327-333.

Nicolau, D.; Crowe, H.; Nidhtingale, C.; Quintiliani, R. Rifampicin-fluconazol interaction in critically ill patients. Ann Pharmacother. 1995;29(10):994-996.

Panomvana, A.; Thanompuangseree, N.; Tansuphaswadikul, S. Effect of rifampicin on the pharmacokinetics of fluconazole in patients with AIDS. Clin Pharmacokinet. 2004;43(11):724-732.

Fica, C. Tratamiento de infecciones fúngicas sistémicas Primera parte: Fluconazol, Itraconazol y Voriconazol. Rev Chilena Infectol. 2004;21(1):26.

Tucker, R.; Denning, D.; Hanson, L.; Rinaldi, M.; Graybill, J.; Sharkey, P.; et al. Interaction of azoles with rifampin, phenytoin, and carbamazepine: in vitro and clinical observations. Clin Infect Dis. 1992;14(1): 165-174.

Fernández, A.; Hernández, D.; Londofio, A.; López, C.; Pineda, Y.; Wolff, J.; et al. Interacciones medicamentosas en pacientes bajo tratamiento con itraconazol para diferentes tipos de micosis. Biornédica. 1999;9(4):286-296.

Viudes, A.; Peman, J.; Canton, E.; Ubeda, P.; Gobernado, M. Actualización de las interacciones farmacológicas de los antifúngicos sistémicos. Rev Esp Quimioter. 1999;12(2).

Ruiz, N.; Arriaga, M.; Ocharán, M.; Sánchez, J.; Pérez, E.; Montes, M.; et al. Aspectos farmacocinéticos del fluconazol. Rev Hosp Juárez de Méx. 2013;80(1): 28-33.

Pea, F.; Furlanut, M. Pharmacokinetic aspects of treating infections in the intensive care unit. Focus on drug interactions. Clini Pharmacokinet, 2001;40(11): 833-868.

Narang, P.; Trapnell C.; Schoenfelder J.; Lavelle J.; Blanchine, J. Fluconazole and enhanced effect of rifabutin prophylaxis. New England Journal Medical, 1994;330: 1316-1317.

Seward, H.; Roujeinikova, A.; McLean, K.; Munro, A.; Leys D. Crystal structure of the Mycobacterium tuberculosis P450 CYP121-fluconazole complex reveals new azole drug-P450 binding mode. J Biol Chem. 2006;281(51): 39437-43

Ahmad, Z.; Sharma, S.; Khuller, G.K. In vitro and ex vivo antimicobacterial potential of azole drugs against Mycobacterium tuberculosis H37Rv. FEMS Microbiol. 2005;251: 19-22.

Published
2018-06-08
How to Cite
1.
Sandrea L, Ramirez C, Romay Z. Fluconazole as a therapeutic alternative in infections associated with Mycobacterium tuberculosis. Kasmera [Internet]. 2018Jun.8 [cited 2024May18];46(1):61-9. Available from: https://produccioncientificaluz.org/index.php/kasmera/article/view/24657
Section
Original Articles